
Who Should Take This Task? –
Dynamic Decision Support for Crowd Workers

Ye Yang
Stevens Inst. of Technology

1 Castle Point Ter
Hoboken, NJ 07030, USA

+1(201)216-8560

ye.yang@stevens.edu

Muhammad Rezaul Karim
University of Calgary

2500 University Drive NW
Calgary, Alberta T2N 1N4

+1 (403) 220 7692

mrkarim@ucalgary.ca

Razieh Saremi
Stevens Inst. of Technology

1 Castle Point Ter
Hoboken, NJ 07030, USA

+1(201)216-8560

rlotfali@stevens.edu

Guenther Ruhe
University of Calgary

2500 University Drive NW
Calgary, Alberta T2N 1N4

+1 (403) 220 7692

ruhe@ucalgary.ca

ABSTRACT
Context: The success of crowdsourced software development (CSD)

depends on a large crowd of trustworthy software workers who are

registering and submitting for their interested tasks in exchange of

financial gains. Preliminary analysis on software worker behaviors

reveals an alarming task-quitting rate of 82.9%.

Goal: The objective of this study is to empirically investigate

worker decision factors and provide better decision support in order

to improve the success and efficiency of CSD.

Method: We propose a novel problem formulation, DCW-DS, and

an analytics-based decision support methodology to guide workers

in acceptance of offered development tasks. DCS-DS is evaluated

using more than one year’s real-world data from TopCoder, the

leading CSD platform.

Results: Applying Random Forest based machine learning with

dynamic updates, we can predict a worker as being a likely quitter

with 99% average precision and 99% average recall accuracy.

Similarly, we achieved 78% average precision and 88% average

recall for the worker winner class. For workers just following the

top three task recommendations, we have shown that the average

quitting rate goes down below 6%.

Conclusions: In total, the proposed method can be used to improve

total success rate as well as reduce quitting rate of tasks performed.

CCS Concepts
• Software and its engineering → Software development

process management • Information systems → Data analytics

Keywords
Crowdsourced software development; worker behaviors; dynamic

decision making; submission rate; submission score; task-quitting.

1. INTRODUCTION
As an emerging paradigm, crowdsourced software development

(CSD) derives from general crowdsourcing by utilizing an open

call format to recruit global online software workers to work on

software mini-tasks [1, 2, 3]. The success of CSD relies heavily on

a large crowd of trustworthy software workers who are registering

and submitting for crowdsourced tasks in exchange of financial

gains. More specifically, a general CSD process starts with task

requesting companies distributing tasks with prizes online, and then

crowd software workers browsing and registering to work on

selected tasks, and submitting work products once completion.

Crowd submissions will be evaluated by experts and experienced

developers, through a peer review process, to check the code

quality and/or document quality [1, 12]. The number of

submissions and their evaluated scores reflect the level of success

in task satisfaction or completion.

Designed to enable wide task accessibility and self-selection, most

CSD platforms allow crowd developers to freely choose tasks to

engage based on their personal skills, experience, and interests.

This consequently results in two types of challenging issues: 1)

manual task selection is very time consuming considering the large

number of simultaneously available tasks; and 2) task requesters

typically have very limited visibility and control over unknown

workers. From the task requester’s perspectives, it is challenging to

identify best workers for their tasks, and even more challenging to

monitor risks related to workers reliability shortfalls. While most

CSD platforms employ certain trust or reputation system, the

effectiveness of solely relying on such system to identify or filter

workers is rather limited [8]. Inappropriate task-worker matching

may harm the quality of software deliverables [11]. Some CSD

decision support methods were proposed for task requesters in

facilitating decisions related to software task pricing [3] and

developer recommendation [11].

However, a more important issue in competitive CSD is that worker

decisions are highly volatile from task registration to task

submission, and may cause cascading effects on crowdsourcing

failure. As the current baseline, the following observations are

drawn from data from January 2014 to January 2015, extracted

from TopCoder, the most popular software crowdsourcing platform

[9]:

 High quitting rate. In this period, 50089 out of 60433 records

of worker-task registration led to no submissions, which

indicates a high task-quitting rate of 82.9%.

 Weak average submission quality. Among the 10344

submissions, 5777 (55.8%) has failed quality review.

 Non-trivial task failure rate. 769 out of the 4907 tasks (15.7%)

were cancelled due to zero or failed submissions.

These alarming observations motivate the research presented in this

paper. We aim at tackling the problem to improve these outcomes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ESEM '16, September 08-09, 2016, Ciudad Real, Spain
© 2016 ACM. ISBN 978-1-4503-4427-2/16/09…$15.00

DOI: http://dx.doi.org/10.1145/2961111.2962594

from a different perspective, which is to support dynamic decision

making of crowd workers. We report the results of an empirical

study that investigated the influencing factors of crowd worker’s

behaviors in a competitive CSD context, introduce dynamic

features extracted to characterize dynamic competition factors, and

propose an analytics-based dynamic worker decision support

framework using random forest learners. The results are the first

step towards the development of a dynamic recommendation

systems for crowd workers to make decisions on their best-

matching tasks with high winning probability.

The paper is structured as follows: Section 2 introduces a

motivating example; Section 3 summarizes related work; Section 4

presents the modeling of the task recommendation problem;

Section 5 details the experimental study design; Section 6 reports

empirical results; Section 7 discusses the results and threats to

validity; and finally Section 8 provides conclusions and an outlook

to future work.

2. MOTIVATING EXAMPLE
To better understand the basic decision scenario of CSD, we

provide an illustrative example presented in Figure 1. The example

includes information about task selection and completion of five

tasks and among six workers. The three numbers along with each

worker summarize the number of registered tasks, the number of

submitted tasks, and the number of winning tasks, respectively,

during the period from Jan 2014 to Dec 2015. For example, worker

Sunbinbrother, besides registering for all five tasks shown in Figure

1, has totally registered for 4096 tasks, in that period, but did not

submit for any of them (i.e. submission rate = 0). Another worker,

OlinaRuan, in total registered for 162 tasks, made 14 submissions,

and 6 wins. The two numbers under each task ID represent the

numbers of registrants and submissions per task. The difference

between them are the number of workers who only registered for

that task, but not submitted.

For a given task, after the specified deadline, each submission to

that task is reviewed and evaluated with a quality score. A CSD

task is called failed if it does not receive at least one acceptable

submission exceeding the minimum quality score. In Figure 1,

successful tasks are colored in green, and failed tasks are colored

in orange. For example, task #30041810 is failed due to zero

submissions, even though its registered crowd of 41 workers

indicates a very broad participation.

Figure 1. Motivating example to illustrate workers’ behaviors

in task selection and completion. Dotted, bold and dashed

lines represent registration without any submission, winners,

and submissions without winning, respectively.

As introduced earlier, the 82.9% task quitting rate and 55.8% failed

submissions relate to a total CSD failure of 15.7%. To assure

greater CSD success, it is essential to ask: Why do crowd workers

quit tasks? From crowd workers’ perspectives, even though they

have the freedom in selecting tasks, many workers are trying to

maximizing their utility in winning a competition. If a worker’s

perceived chance of winning a task is low, they may choose to quit

a task [4]. There could be many imperfect information during this

decision making of crowd workers that results in high task-quitting

rate, for example:

Optimism bias in task selection. Software developers have a

record of overestimating their productivity [15]. Most workers tend

to be over-optimistic and select more tasks than what they can

complete. The six workers shown in Figure 1 demonstrate different

level of optimism in that all of them selected more tasks to register

than those that they submitted. Such optimistic belief includes:

what types of tasks they are interested, skill match to those required

by a task, affordability in terms of time and effort required to

complete a task, etc. The higher the optimism bias, the more likely

a worker will change mind and quit the task later on.

Effort concentration in competition context. When facing time

pressure and the need to cut down workload, workers tend to focus

on those tasks that best match their personal interest and expertise.

Table. 1 summarizes the competition history of worker Savon_cn.

While most task types are self-explaining by names, a First2Finish

task is a software development contest which stops when receiving

the first satisfactory solution. These results reflect that Savon_cn

have a broad scope of interests, and his personal submission focus

(i.e. the last column) is only on 3 task types.

Perceived pressure from competition dynamics. Crowd workers

may feel more stressed and anxious when competing for a task with

more participants, especially in the presence of some strong

competitors. For example, as shown in Figure 1, task #30043935

has four registrants, but only with one submission. The primary

reason for the other three registrants quitting the task might be the

perceived competition pressure received from worker Savon_cn.

On the one hand, such perception is extremely subjective and

highly depends on an individual worker’ particular motivation or

availability at that time. On the other hand, the task outcome would

be jeopardized if crowd workers hold inaccurate or wrong

perception about their chance of winning.

In this study, we aim at modeling the above factors in addressing

the high quitting issues in CSD.

Table 1. Competition history summary of worker “savon_cn”.

Task Type #Reg. (%) #Subm. (%) Subm. ratio

First2Finish 185 (66%) 76 (73%) 41.1%

UI Prototyping 48 (17%) 0 (0%) 0

Code 27 (10%) 7 (7%) 25.9%

Assembly 21 (7%) 21 (20%) 100%

Specification 1 (0%) 0 (0%) 0

Total 282 (100%) 104 (100%) 36.9%

3. RELATED WORK

3.1 Crowd Worker Motivation and Behavior
Many studies have reported various motivational factors of crowd

workers, which largely fall into two categories: intrinsic and

extrinsic factors [7, 9, 16]. Kaufmann and Schulze [7] combined

different models from classic motivation theory, work motivation

theory, and Open Source Software Development model to

crowdsourcing markets, and identified extrinsic factors, such as

immediate payoffs, delayed payoffs, and social motivation, have

strong influence on a worker’s time spending on crowdsourcing

tasks.

Many software workers tend to optimize their utility of choosing

the task based on different attributes and personal utility [2, 10].

For example, it is reported in [17] that a high ranking motivation

factor is requesters with brand names, such as Google and NASA,

which attracts software workers to apply for tasks, that potentially

can be used in strengthening resumes and affects software worker

ratings indirectly or directly.

For newcomers or beginners, it takes time to improve and turn into

an active worker after their first arrival [2, 10]. Therefore, most of

them focus on registering and gaining experience by competing

with peers, but the chance of them winning the competition is rather

low. Existing studies show that by passing time, registrants gaining

more experience, hence better performance is expected and

consequently higher score will be granted [13]. In addition, “Cheap

Talk” [13] has been reported as a strategy referring for tough

competitions, in which strong contestants strategically employ this

strategy to deter additional competitor entry into the task.

3.2 Software Task Assignment
Assigning human resource to software development tasks has been

studied intensively [18]. The questions to be answered in general

are “Who will work on what?” and “When to work on what”? A

variety of techniques has been proposed for addressing these

questions, primarily for proprietary software development. Finding

the best assignment strategy in consideration of conflicting

objectives and constraints related to time, effort or other

dimensions have been studied. As one of the first attempts in that

direction, evolutionary algorithms were introduced for that purpose

by Chang et al. [19]. Alba and Chicano [20] moved ahead and

employed genetic algorithms to assign resources to tasks while

taking into account duration, resource skills, cost and global

complexity. More recently, Karim et al. [21] studied the assignment

of tasks (in that case, for bug fixing) to developers based on the

match of expertise.

CSD is different from proprietary development in its process, level

of control and objectives to be achieved. Scheduling aspects are of

minor relevance as there are fixed time frames of delivery for all

tasks. Allocation of tasks is replaced by the bidding process

performed by crowd workers. The main flexibility is on the crowd

workers to decide about registration and performance of tasks, in

this paper, we provide decision support for developers to facilitate

answering “Who Should Take This Task”?

3.3 Decision Making for Crowdsourcing
Online decision algorithms have a rich literature in operations

research, economics, machine learning, and artificial intelligence,

etc. Much of existing work on crowdsourcing decision making is

addressing problems in the general crowdsourcing markets. For

example, many studies have applied machine learning techniques

in learning worker quality and optimizing task assignment

decisions [5], aggregating individual answers to improve quality

[6], and worker incentives [7]. Slivkins and Vaughan [22]

identified a variety of modeling choices for repeated decision

making in crowdsourcing, including five categories: task design,

platform design, quality of work, incentives and human factors, and

performance objectives. Karger et al. [23] introduced a task

assignment model for classification tasks and proposed a non-

adaptive assignment algorithm based on random graph generation.

Singer and Mittal [24] proposed a dynamic procurement model for

crowdsourcing in which workers are required to explicitly submit

their preferences. Bernstein et al. [25] proposed to apply queuing

theory in real-time crowdsourcing to predict the expected waiting

time and cost of the decomposed uploaded tasks.

In software crowdsourcing, only a few studies have focused on

decision support for software crowdsourcing market. Among them,

most focus on supporting decision making from the perspectives of

task requesters or crowdsourcing platforms. These studies include

task pricing [3, 10], developer recommendations [11], and

understanding worker behaviors [4, 12, 13, 14]. For example, Mao

et al. [11] presented a content-based developer recommendation

framework for CSD context, to recommend reliable workers based

on static features extracted from participation history and winning

history. However, there is no consideration on dynamic aspects of

ongoing competitions at any given decision time. In addition, most

of such models are from the perspectives of task requesters or

crowdsourcing platforms, and there is a lack of research on decision

support for crowd workers.

4. MODEL BUILDING AND PROBLEM

FORMULATION
The objectives of this study is to support software worker’s

decisions in CSD, drawn from workers’ past competition history.

To that end, we propose to model incorporating both conceptual

and dynamic aspects of worker decision process in CSD, and

formulate a novel worker decision support problem towards the

measurable goal of reducing overall task quitting rate.

4.1 Conceptual Worker Decision Model
In this study, we adapt the competitive CSD process model from [4]

and extend the award-worker behavior model to elaborate on key

decisions that crowd workers frequently need to make. More

specifically, the CSD process starts with task requestor. We

propose a static worker behavior model as illustrated in Figure 2.

In this model, we define four terms characterizing different types

of software crowd workers: (i) a Quitter is a worker who did not

make submissions to a task (s)he once signed up for, by the given

deadline; (ii) a Winner is a worker who has submitted a piece of

code for the stated task, and was evaluated as the winner or runner-

up among all submissions; (iii) a Submitter is a worker who has

submitted for a task but did not win the competition; and (iv) the

Uninterested being workers who were active but did not register for

a task.

Figure 2. Conceptual worker decision model.

The two key decisions to be made of crowd workers, depicted as

two diamonds in Figure 2, are:

1) Willing to compete? Decision on whether the worker is willing

to compete on a task. Our previous work assumed that the task

award and perceived required effort or skills to complete the

task are two main factors to consider at this point. In this work,

we propose to include more information from task description

such as challenge type, technology, semantics in task

requirements, in order to provide best matching tasks for active

and interested workers, based on past competition history.

2) Chance to win? Decision on whether there is a chance to win a

task. Our previous work drew light on the role of distracting

factors that may lead workers change their minds to drop a once

registered task. Such factors could be competition anxiety

according to the Yerker-Dodson law [4, 28], unavailable time

and resource, etc.

In this study, we employ the first three worker types as the labels

on competitor outcomes that describe worker participation in CSD

tasks. While the reasons for different workers to quit a competition

may be complicated, there is a need to better understand software

workers’ dynamic decisions factors with respect to different

specific stages of a task competition. More specifically, we need to

better understand the context and characterize, for a specific worker,

his/her current state of competition. This will be introduced in the

next section.

4.2 Dynamic Worker Decision Model
To model the contextual factors for CSD competitions, assuming

when a new task ti is posted, we define the following competition

attributes in order to characterize a worker wj’s previous

competition history:

 ri,j : the number of times wj registered for tasks similar to ti;

 si,j : the number of times wj submitted for tasks similar to ti;

 vi,j : the number of times wj won tasks similar to ti.

Next, we define a set of dynamic features for worker wj, based on

these competition attributes.

4.2.1 Measuring Worker’s Optimism Bias
Workers’ participation history offers helpful information on the

tendency of optimism bias in making task selection. Presumably, a

worker with strong optimism bias tends to register more tasks that

(s)he can possibly complete in a given timeframe, which forces

him/her to quit a significant number of them due to time constraints.

Therefore, we propose to measure such optimism bias in task

selection through worker’s submission rate.

Definition 1: For a given worker wj, the worker’s submission rate

(SRi) is defined as the ratio of number of submissions and number

of registrations in a worker’s competition history, i.e., all tasks the

worker has competed on during a fixed time duration.

In this study, SR of worker wj is defined by Eq.-1. This can also be

used to indicate the relative degree of a worker’s optimism bias in

task registration. The higher the submission ratio is, the lower the

optimism bias.

SRj = (∑ 𝑠𝑖,𝑗
𝑚
𝑗=1)/(∑ 𝑟𝑖,𝑗

𝑚
𝑗=1) for all i Eq.-1

4.2.2 Measuring Worker’s Effort Concentration
Learning from competition history can lead to a better

understanding and modeling of worker’s personal submission

effort concentration.

Definition 2: Effort Concentration (EC) is measuring the

submission focus of a worker wj using her average submission ratio

on similar tasks. For all pairs of task ti and worker wj, effort

concentration ECi,j is calculated according to Eq.-2 as the number

of submissions divided by the number of registrations across the set

of similar tasks. Details on task similarity analysis will be discussed

in Section 5.4.

ECi,j = si,j/ri,j for all i,j Eq.-2

Definition 3: Submission Quality (SQ) is defined as the worker’s

average score of her submissions (if si,j > 0) on a task’s previous

similar tasks. Suppose for worker wj, we can calculate her average

score of si,j across all previous submissions on similar tasks. The

detailed definition is shown in Eq.-3:

SQi,j = Average score of si,j submissions , if si,j > 0

and SQi,j = 0 otherwise
Eq.-3

4.2.3 Measuring Current Competition Status
Definition 4: Competition Status of a task consist of a group of

time-related metrics to measure worker’s competition preferences

during his most recent competition history w.r.t. the past T days.

Therein, where T represents the number of days to look back from

any given current day. These dynamic metrics include:

 NumTask: the number of currently registered but not yet

submitted tasks of worker wj at any given time;

 NumRegTasksTDays: the number of registered tasks in the

last T days;

 NumSubTasksTDays: the number of submitted tasks in the

last T days;

 NumWinTasksTDays: the number of won tasks in the last T

days;

 AvgPrice: the average price of the registered tasks in the last

T days;

 CompetitorFactors: For each worker, we also derived

competitor related metrics based on the above dynamic

metrics by taking average of the top Y competitors over

historical data collected over the last T days. In this study, we

set Y equals to 5 to compare with a worker’s top 5 competitors.

4.3 Problem Formulation
We propose to model the problem of dynamic worker decision in

CSD context as a single-label 3-value (i.e., winner, submitter, and

quitter) classification problem as well as ranking relevant tasks to

each worker. Each interaction of a worker with a task on the CSD

platform is modelled as an instance in a chronically ordered stream

of competition behaviors, for training and testing purpose. We

define for each of the instance a set of dynamic features describing

the status of the worker’s behavior. The label on each instance is

assigned by observing the competition outcome of each worker-

task relationship.

In total, we define the dynamic crowd worker decision support

problem DCW- DS:

With a given track record of workers and their task performance,

predict whether (i) the worker is going to be a

winner/submitter/quitter for a given task, and (ii) on a daily basis,

recommend for each developer the top three tasks having highest

winning chance?

5. STUDY DESIGN
To empirically investigate the machine learning based solution

approach for the DCW-DS problem, we design three research

questions and conduct experiments using real-world data collected

over a period of more than one year. Figure 3 summarizes the steps

and research questions associated with the study conducted.

In the following subsections, details are presented related to the

studied research questions, actual dataset, the data pre-processing

steps, similarity analysis, classification of the workers using

Random Forest RF machine learning technique, ranking of the

tasks for workers and metrics selected for performance evaluation.

5.1 Research Questions
To investigate the dynamic crowd worker decision support problem

DCW-DS, the following research questions (RQs) were formulated

and studied in this paper:

RQ1: What are the Top-10 impact factors for a worker to be a

quitter, winner or submitter? This RQ is designed to measure the

relative importance of various attributes on the classification of a

worker, specifically to see the most influential Top-10 impact

factors.

RQ2: How does the classification results vary in dependence of

usage of dynamic versus using just static features? This RQ is

designed to investigate whether the use of dynamic features

improves the quality of prediction of a winner/submitter/quitter

worker compared to using just static features.

RQ3: What is the potential effectiveness of the proposed method in

reducing task quitting rate? This RQ is designed to investigate

whether the use of the most promising task recommendations per

worker will reduce quitting rate and by how much.

Figure 3. Main flow of the proposed framework and

relationship to research questions.

5.2 Dataset
The dataset investigated in our study is extracted from the

TopCoder website. It contains the following information:

Task metadata. The dataset contains 4907 competitive software

development tasks posted during the time frame from January 22,

2014 to March 9, 2015. The tasks across a diverse range of types

including design, UI prototyping, coding, assembly, bug hunting,

etc. The task attributes include Name, Prize, StartDate, EndDate,

Type, Platform, Technologies, and detailed requirements.

Worker metadata. The dataset includes metadata information

about 8108 workers having been active during the given timeframe.

The worker attributes are name, country, year joining the

community, community rating, and overall earning.

Competition history. The dataset includes 60433 records of

worker-task registration and submission relationship, i.e.,

RegisteredOnly and Submitted. Each relationship captures the

dates a worker participated in a task by registering and by

submitting to a task. If it is a RegisteredOnly relationship, then the

submission date is NULL, as illustrated at Table 2.

Table 2. Example competition history of worker savon_cn

during the week of 07/01/14 to 07/05/14.

Worker Task ID Registration Date Submission Date

savon_cn 30043741 7/1/14 21:52 NULL

savon_cn 30043845 7/1/14 21:11 NULL

savon_cn 30043935 7/5/14 20:52 7/5/14 20:52

Competition results. Results of a competition include submission

status, the scores for each submission, and their corresponding rank

in the task competition. The scores were produced through multiple

rounds of peer reviews organized by TopCoder. Submission status

denotes whether the worker was the winner or just submitter for the

task. There are cases that a task corresponds to multiple submitters

but no winner, which means all submissions failed review and the

task has failed. Table 3 below shows an example task competition

results in the dataset.

Table 3. Example competition results of task #30043741.

Task ID Worker Score Rank Status

30043741 sin_hu 85.44 1 Active

30043741 gmagniez 74.94 2 Failed Review

30043741 NoRKin 72.83 3 Failed Review

In this study, the selected static data attributes are summarized in

Table 4. Additionally, the extraction and preparation of time-based

dynamic features used in this study will be discussed in Section 5.5.

Table 4. Summary of selected static data attributes.

Feature Format Description

Task ID Numeric The unique identity of the task.

Task Prize Numeric The amount money to the
winner(s).

Registration Start

Date

Date/Time The date and time the task

competition is open.

Submission End

Date

Date/Time The date and time the task

submission is closed.

Task Type Text Type of task competition.

Feature Format Description

Technology Text Required technologies by the

task.

Platform Text Required technologies by the
task.

Detailed
Requirements

Text Detailed text information of task
requirements.

Worker name Text The unique name of the worker.

Worker’s
registration date

Date/Time The date and time the worker
registering for the task.

Worker’s
submission date

Date/Time The date and time the worker
submitting for the task.

5.3 Data Filtering and Preprocessing
Data cleaning is the first step. We filter those historical tasks

according to the following criteria:

1) Tasks with incomplete information: for example, some tasks

were cancelled before their submission deadline. This step

removes 190 such tasks.

2) Unusual tasks: to exclude irrelevant empirical knowledge, we

remove the unusual tasks that are apparently different from the

majority of CSD tasks. Such tasks are typically associated

with extremely high prices, i.e., typically greater than $5000

in total prize. They are organized in either Hackathon or

Mashathon challenges, or fixed-duration, multi-winner grand

challenges. For example, there is a 30-day debugger challenge

with a total prize of 100,000, including 3296 registered

workers, and 1253 winners. We excluded 8 tasks (1

Mashathan, 4 Hackathon, and 3 grand challenges) priced

above $5,000.

3) Inactive worker: as discussed earlier, if a worker never

submitted to any task, he is treated as inactive and filtered out.

Next, we convert each text feature into word vector format, keeping

only meaningful and descriptive tokens processed by tokenizing

and stop word removal. Suppose there are m terms, then the

corresponding vector vt would be vt = (wt,1, wt,2, …, wt,m), where

wt,j stands for the weight for each termj. The weights are calculated

as Term Frequency Inverse Document Frequency (TF-IDF) [26].

5.4 Similarity Analysis
For each new task, a starting point of extracting dynamic features

is to identify a set of similar tasks from the past, and then extract

the current worker’s dynamic features based on their past

performance on the similar task set.

Definition 4: Similarity Simi,j, between two tasks ti and tj is defined

(see Eq.-4) as the weighted sum of all local similarities across the

features listed in Table 4:

Simi,j = w1*Dist1(ti,tj) + w2*Dist2(ti,tj)

+ …. + wn*Distn(ti,tj)
Eq.-4

Where Distj indicates the local distance function and wj stands for

the weight assigned to the corresponding attributes. In our study,

we used 7 similarity attributes, as summarized in Table 5, and

assume equal weights. We treat the 7 task distance measures in

Table 5 equally important, but not the dynamic features derived

from this component.

When extracting dynamic features, for simplification reason, we set

a similarity threshold value of 0.8 in order to only include the most

similar tasks. Then, at any given time, for each worker-task pair in

our dataset, we calculate the worker’s dynamics features based on

the most similar tasks, according to the definitions in Section 4.2.

Table 5. Feature distance measures used.

Feature Description of distance measure Disti

Task Prize (Prizei - Prizej) = PrizeMax

Registration
Start Date

(Datei - Datej) = DateMaxDiff

Submission
End Date

(Datei - Datej) = DateMaxDiff

Task Type Typei == Typej?1 : 0

Technology Match

(Techi; Techj) = NumberOfTechsMax

Platform PLi == PLj?1 : 0

Detailed

Requirements

(Reqi*Reqj)/| Reqi |*| Reqj|

5.5 Classification Using Random Forest

Prediction
In our study, we built a separate prediction model using Random

Forest [30] algorithm on each day for the period between Jan 22,

2014 and Mar 9, 2015. Random Forest (RF) is an ensemble of

classifiers and was found to outperform other classifiers in many

other applications in the software engineering and machine

learning literature [31]. Even though we used RF, any other

prediction algorithm that assigns probability scores for each class

label (e.g., Naïve Bayes, Support Vector Machine) can be used as

prediction model. A comparative analysis was outside the scope of

this paper and will be an aspect of future work.

Before building a model for a specified day, for each sample

(definition given below), the static and dynamic features, as defined

in Section 4.2, were extracted. Dynamic features were derived for

a historical data of past T days. In this study, we have selected three

configurations of T, i.e., 60 days, 90 days, and 120 days

respectively.

Figure 4. Illustration of selecting training set and testing set.

Before building and evaluating a model on a particular day d, we

created two sets of samples of data called Training set (TR) and

Testing set (TS). This is illustrated in Figure 4. TR contains all

samples for training the model, while TS contains all test samples

of ongoing tasks. Each sample in the set TR represents information

(static and dynamic features related to the relevant task and the

worker) for a developer-task pair where the developer actually

registered for a task and the submission deadline was earlier than

the current date d.

Similarly, each sample in the sets TS contains same kind of

information but for all the tasks where the submission deadline is

beyond the date d. The task’s registration open dates for the test

samples can be no later than date d. We also labeled each sample

in the training set TR as winner, quitter, submitter based on the

definition given in section 4.1. Once training and test samples were

created, we predicted the label for each sample in the test set TS.

For each sample, we also extracted the probability scores for each

class label (winner, quitter, and submitter).

The WEKA machine and data mining library [30] was used for

building and evaluating the models. The predictive modeling

experiments conducted were performed with 124 features

(excluding class variable), including 14 dynamic features and 110

static features. Among the static features, 107 binary features

encoded the required technologies (e.g. css, html5, java) of the task.

The rest of the static features were task duration, task total prize

and overall submission rate of the worker. The whole dataset used

in this study, including task attributes, worker attributes, and

extracted features, is posted in a Github repository [27].

5.6 Ranking of Relevant Tasks for Workers
For each worker from the test set TS, we ranked the relevant tasks.

To come up with the ranking, we first identified the test samples

belonging to each worker. Then ranked the identified samples in

descending order of the workers’ winner label probability score and

put them in a list.

We discarded the samples with low winner probability score (i.e.

less than 0.33) as well as where the winner probability score is less

than the submitter probability score. Next sorted the same identified

samples in descending order of their submitter label probability

score. In this case, we filtered samples based on a probability

threshold (i.e. less than 0.33) as well as when submitter probability

score is less than the winner probability score. Then appended the

remaining samples in the tail of the previously constructed list if

already not added. The constructed lists contained ranked tasks for

each worker with tasks with high winning chance followed by high

submission chance. For some workers, especially with workers

with no winning history, the constructed list contains ranked tasks

with high submission chance only. Our hypothesis is that this kind

of task ranking for workers can reduce task quitting rate of the

worker in the recommended tasks.

5.7 Metrics for Performance Evaluation
For the goal of evaluating the quality of our predictions, we have

defined four metrics to evaluate the accuracy of predictions:

Definition 5: Precision describes the percentage of samples of

correctly predicted quitter (or winner or submitter).

Definition 6: Recall describes the percentage of samples of the

quitter (or winner or submitter) class in the predicted results, out of

all the samples that are quitter (or winner or submitter, respectively).

Definition 7: F-measure is the harmonic mean of precision and

recall and combines these two measures into one.

Definition 8: Quitting rate (@Top 3) is the average of the number

of quitted tasks out of the Top 3 recommended tasks for all workers.

6. EMPIRICAL RESULTS
Following the DCW-DS study design presented in Section 5, we

conducted our empirical analysis. In this section, we report the

results for answering the three research questions.

6.1 What are the Top-10 impact factors for a

worker to be a quitter, winner or submitter

(RQ1)?
For this RQ, we applied Chi-Squared [29] and Information Gain

[29] attribute evaluation algorithms to determine the impact of the

static and dynamic features. The former evaluates the importance

of an attribute by computing chi-squared statistics with respect to

the class variable, while the later evaluates the impact by measuring

the information gain with respect to the class variable.

Table 6 shows the Top10 ranking of the features extracted on the

entire data set. The final ranking, shown in the last column, is

determined by taking average of the rankings gained from

Information Gain [29] and Chi-Squared algorithms [29]. We can

see from the table that dynamic features like SQ, EC,

CompetitorFactors-SubRate, number of won/submitted/ registered

tasks in last T days, and AvgPrice are among the Top10 attributes.

We also found several static attributes are among the Top10

attributes like SR, TotalPrize, and Task duration. Among the

competitor related attributes, average of average success rate for

the top Y competitors was ranked fourth. These results indicate that

dynamic features of the worker as well his/her competitors’

dynamic features have high impact in determining the class label

for a worker on a particular task.

6.2 How classification results vary in

dependence of usage of dynamic features

(RQ2)?
To answer RQ2, we compared the classification and ranking

performance of the Random Forest classifier with and without

using the dynamic features. When we considered only static

features for building predictive model, for each training and test

sample only one feature was related the worker (overall submission

Table 6. Ranking of Top-10 features impacting predictions.

R
a

n
k

Attribute Name Type

In
fo

 G
a

in

R
a

n
k

C
h

i
S

q
u

a
re

d

R
a

n
k

A
v

e
ra

g
e
 o

f

r
a

n
k

s

1
SQ (average submission quality
on similar tasks)

Dynamic 1 1 1

2 SR (Overall submission rate) Static 2 2 2

3
EC (average submission rate on
similar tasks)

Dynamic 3 3 3

4
CompetitorFactors-SubRate
(average of average submission

rate For Top Y Competitors)

Dynamic 4 4 4

5
NumWinTasksTDays (number of

won tasks in last T days)
Dynamic 5 5 5

6
NumSubTasksTDays (number of

submitted tasks in last T days)
Dynamic 6 6 6

7
AvgPrice (average price of
registered tasks in last T days)

Dynamic 9 7 8

8 TotalPrize (task total prize won) Static 8 8 8

9
NumRegTasksTDays (number of
registered tasks in last T days)

Dynamic 7 10 8.5

10 Task Duration Static 10 9 9.5

rate). The other features were related to the task which are task

duration, task total prize and technology related features. When we

added dynamic attributes with the static attributes, we had more

attributes related to the worker as well as his/her competitors.

For the classification performance, we compared results in terms of

average precision, average recall and average F-measure computed

over consecutive 30 days period. Results are shown in Table 7 for

30 days period starting at September 01, 2014. For each day, we

used the dedicated training set generated for that day to build two

predictive models (with and without dynamic features) and tested

on the dedicated test set for that day. The dynamic features were

computed considering the historical data of the last 90 days (T=90).

For both the quitter and winner models, we achieved very high

precisions, recalls and F-measure values. Random Forest algorithm

could predict a worker as quitter with around 99% average

precision and average recall with the addition of all dynamic

attributes with the static attributes. Based on the large presence of

the quitter class samples in the training data, it is quite expected

that the models perform very well in detecting quitter class samples.

Table 7. Performance evaluation on 30 consecutive days with

dynamic and without dynamic features in terms of average

Precision (P), average Recall (R) and average F-Measure (F).

Feature

type

Quitter Winner Submitter

P R F P R F P R F

Dynamic .99 .99 .99 .78 .88 .82 .80 .54 .64

Static .88 .93 .90 .43 .27 .33 .51 .29 .31

If we look at the results for the winner class, we notice that a worker

can be labelled as a potential winner with around 78% average

precision and 88% average recall when all the dynamic attributes

are added. For the submitter class, both models have high average

precision but low average recall.

For other values of T, we also achieved almost similar precision,

recall and F-measure values for all classes (results not shown) when

dynamic attributes were added with the static attributes. To make

sure that sufficient past data (registration, submission and winning

information for each worker) is available for computing the

dynamic feature values and also to use relatively recent data,

minimum value of T was chosen as 60 days and maximum value of

T was chosen as 120 days, with 30 days interval.

If we compare the results of the models with and without dynamic

attributes, we can see that addition of dynamic attributes

significantly improves the performance in terms precision, recall

and F-measure for all classes (see Table 7 and Figure 5). Figure 5

shows by how much the addition of dynamic attributes improves

precision, recall and F-measure values over the same consecutive

30 days period for the winner class with T=90. For the winner class,

the daily performance improvement lies between 10% and 80%.

To compare the performance of predictive algorithms with and

without dynamic features, we also conducted non-parametric

statistical test with the results obtained with three different values

of T (T=60, T=90, T=120) for the same period of 30 days of

analysis. Since variances were observed in daily performance for

each metric, statistical tests were necessary to make fair

comparison. Nonparametric statistical methods were chosen in this

study as they do not make any rigid assumptions regarding how

values in the population are distributed.

For each performance metric (precision/recall/F-measure), we

conducted Mann-Whitney U test to compare the performance with

and without dynamic features obtained for a particular value of T

with p < 0.001. When the difference was statistically significantly

different, we computed Vargha-Delaney effect size measure value

to measure the probability that the addition of dynamic features

improve the performance of predictive model when static features

are only used. For this measure, probability above 0.5 means

addition of dynamic features improves performance, probability

below 0.5 means dynamic features leads to worse performance,

equal otherwise. With our Vargha-Delaney effect size comparison,

we noticed that dynamic features improves precision with 95%

probability, recall with 94% probability and F-measure with 96%

probability. For each performance metric (e.g. precision), we took

the average of the probability for 9 comparisons (3 classes

multiplied by 3 configuration of T).

Figure 5. Improvements (%) achieved with dynamic features

for the winner class (compared to just using static features)

over 30-day period.

6.3 Can we recommend the most relevant

tasks to each worker (RQ3)?
To answer this RQ, we rank the recommended tasks per worker on

a daily basis and average the success of the workers in terms of their

quitting rate in top ranked three tasks. Figure 6 shows the average

(taken over 30 days) of the quitting rate of all workers on the

recommended Top 3 tasks on 30 consecutive days starting at

September 1, 2014. When the data over last 60 days (T=60) was

used to compute the dynamic features, we observed mean quitting

rate of 3.56% with a standard deviation of 4.78%. For the other

values of T, the mean and standard deviation was almost same

(around 5.4 and 7.0 respectively). From our analysis, it is evident

that the ranking approach can significantly reduce the quitting rate

and propose relevant tasks each day for any values of T.

Figure 6. Average worker quitting rate of tasks recommended.

Results are compared for varying training sets (durations).

For this RQ, we also conducted a Kruskal-Wallis test (with p <

0.001) to see whether any significance difference exist in the daily

quitting rate when we change the value of T. From our statistical

test, we did not observe any statistically significance difference.

7. DISCUSSION

7.1 Implications to CSD workers
In the dynamic worker decision model, the overall goal is to come

up with a daily-based ranking of current open competitions, for

each worker. Results in RQ1 shows that, learning from worker’s

competition history, the proposed dynamic features on worker’s

overall submission rate, the most concentrated type of tasks, and

the most frequent competitors, help to improve the performance in

recommending the most relevant tasks to him with high winning

chances, in another words, low quitting rate. Leveraging Random

Forest, the proposed DCW-DS method can accurately predict the

tasks on which the developer is going to be a potential submitter or

winner. These kind of rankings and predictions can reduce task

quitting rate if the proposed model is utilized by the developers

before registration in a task and as well as increase the probability

that best skilled workers are submitting.

Among the already registered workers for a task, the model can

provide decision support to two specific types of workers, as

discussed in [11], on a daily basis: the workers who registered for

the task with strong desire to win, and the workers who registered

just to submit and get feedback on their work. The former type of

workers can quit if they are not predicted as winner, while the

workers in the second type can discontinue if our model predicts

them as potential quitter.

Though it appears that the proposed DCW-DS framework might

cause bias to veterans of CSD platform instead of encouraging new

or less experienced developers, actually it is not prescribing

anything and the final decision is still with the workers. Moreover,

it is the responsibility of CSD platforms to employ such decision

support as well as mechanisms in balancing wide participation and

deliverable quality between veteran and novices. For example,

TopCoder provides a special venue for new comer workers to

experience and train their competition skills.

The potential impact of such prediction capability is substantial.

Currently most decision support studies on CSD are from task

requesters or platform perspectives, and the workers are provided

with no facilitation, and hence mostly based on gut-feelings in

selecting tasks and deciding when to stop. Incomplete information

about the competition situation esp. the biased pressure from

competitors may lead to unwise quitting decision, such as “Cheap

Talk” phenomena [13], which may be avoided by a more analytics-

based decision support as the proposed framework. We are

currently collaborating with TopCoder on further evaluating the

proposed method, and the feedback of the potential value is very

encouraging.

7.2 Implications to task requestors
Though it is not the focus of this paper, the proposed dynamic

worker decision model offers a number of practical insights for task

requestors:

i. It may be used to recommend best workers for particular tasks

based on worker dynamics at the point of time. The output of

the framework can be configured to produces a ranked list of

registered workers for each task in terms of their winning

likelihood;

ii. The modeling and output of the competition pressure provides

a dynamic monitoring of the evolving competition situation,

associated with potential winner/submitter/quitter projection;

iii. More transparent competition helps to retain solid workers and

consequently aid in preventing uninformed quitting and

reducing task failure risk;

iv. The quitter prediction may be employed as dynamic

qualification screening criteria to identify and filter out

unreliable workers which are frequently classified as

“Quitter”.

7.3 Threats to Validity
There are a number of threats to validity. First, the proposed method

does not consider worker’s multi-tasking factors, i.e., how many

tasks can a worker take, at maximum, during the same period of

time. Though this is one of the important factors influencing

software project scheduling decisions, we don't see there is a

pattern in the upper bound limits for worker’s multi-tasking.

Second, the data preparation, feature extraction and analysis is

complicated by the temporal nature of the worker activities and

competition outcomes. Different weights and threshold setting,

different selection of temporal window may lead to different

grouping of the instance data, as well as the calculated data on

dynamic features. To avoid this potential threat, we configured

DCW-DS to accommodate different temporal window settings (e.g.

60, 90, and 120 days) to select the training dataset. However, the

validity of the results may be impacted by adjusting some

simplification assumptions including the similarity weights and

threshold value in Section 5.4.

Third, the data sets used in this study for both training and testing

are mostly unbalanced data sets in terms of the number of samples

belonging to different classes: quitter, winner and submitter. The

issue is not addressed in DCW-DS and will be considered in our

future work.

8. CONCLUSIONS
In this paper, we proposed a novel problem formulation, DCW-DS,

and introduced an analytics-based decision support methodology to

guide dynamic decision making of crowd workers in the CSD

context. The proposed method was evaluated using real-world data

from TopCoder. Compared with the baseline 82.9% task-quitting

rate, the results imply that such kind of dynamic decision support

for crowd workers is critical towards achieving an increased

submission rate and reduced failure rate due to no or poor

submissions in current CSD market.

The following extensions are planned as future work: (i) focus on

winning rate by filtering and collecting the right amount of data;

(ii) to provide decision support from requesters perspective to

recommend best-matching workers based on dynamic competition

status; and (iii) comparative analysis of RF with other predictors.

ACKNOWLEDGEMENTS
This research was partially supported by the Natural Sciences and

Engineering Research Council of Canada, NSERC Discovery

Grant 250343-12. The authors thank the reviewers for insightful

comments to early version of the paper, and appreciate the access

to data and support provide by TopCoder’s Dave Messinger. One

of the authors was supported by a grant from Alberta Innovates

Technology Future.

9. REFERENCES
[1] K. R. Lakhani, D. A. Garvin, and E. Lonstein, “TopCoder (A):

Developing Software through Crowdsourcing,” Harvard

Business School Case 610-032, Jan. 2010.

[2] A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber, A. Shaw,

J. Zimmerman, M. Lease, and J. Horton, “The Future of

Crowd Work,” in Proc. CSCW 2013, pp. 1301–1318.

[3] K. Mao, Y. Yang, M. Li, and M. Harman, “Pricing

Crowdsourcing-based Software Development Tasks,”

Piscataway, NJ, USA, 2013, pp. 1205–1208.

[4] Y. Yang and R. Saremi, "Award vs. Worker Behaviors in

Competitive Crowdsourcing Tasks," ESEM 2015, pp. 1-10.

[5] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan.

“Whose vote should count more: Optimal integration of labels

from labelers of unknown expertise,” Advances in Neural

Information Processing Systems. 22(2035-2043):7–13. 2009.

[6] A. Mao, A.D. Procaccia, and Y. Chen, “Better human

computation through principled voting,” in Proc.of the AAAI

Conference on Artificial Intelligence 2013, pp. 1142-1148.

[7] N. Kaufmann, T. Schulze, and D. Veit, “More than fun and

money. Worker Motivation in Crowdsourcing - A Study on

Mechanical Turk”, Proc. 17th AMCIS, 2011.

[8] A. Mao, E Kamar, and E. Horvitz, “Why Stop Now?

Predicting Worker Engagement in Online Crowdsourcing,”

Proc. HCOMP 2013.

[9] T. D. LaToza et al., “Microtask programming: Building

software with a crowd.” In Proc. Symp. UI Software and

Technology, 2014.

[10] S. Faradani, B. Hartmann, and P.G. Ipeirotis, "What's the

Right Price? Pricing Tasks for Finishing on Time", In Proc.

Human Computation, 2011.

[11] K. Mao, Y. Yang, Q. Wang, Y. Jia, M. Harman, “Developer

Recommendation for Crowdsourced Software Development

Tasks,” SOSE 2015: pp 347-356.

[12] TopCoder website: “10 Burning Questions on Crowdsour-

cing: Your starting guide to open innovation and

crowdsourcing success,” https://www.topcoder.com/blog/10-

burning-questions-on-crowdsourcing-and-open-innovation/,

Access date: March 14, 2016.

[13] N. Archak. “Money, glory and cheap talk: analyzing strategic

behavior of contestants in simultaneous crowdsourcing

contests on topcoder.com”, In Proc. Conference on World

Wide Web, pages 21–30, 2010.

[14] H. Zhang, Y. Wu, W. Wu. Analyzing Developer Behavior and

Community Structure in Software Crowdsourcing.

Information Science and Application. Vol. 339. Pp981-988.

[15] M. Jorgensen and S. Grimstad. Over-Optimism in Software

Development Projects: "The Winner’s Curse". In Proc. 15th

International Conference on Electronics,

[16] M. & Marsella, S. C. (2014). Encode Theory of Mind in

Character Design for Pedagogical Interactive Narrative.

Advances in HCI, vol. 2014, Article ID 386928.

[17] J. Yang, L.A. Adamic, and M.S. Ackerman, “Crowdsourcing

and knowledge sharing: strategic user behaviour on tasks,” In:

Proc. ACM conference on Electronic Commerce, pp 246-255.

[18] C. Stylianou, and A. S. Andreou, “Human Resource

Allocation and Scheduling for Software Project

Management,” In: Software Project Management in a

Changing World (G. Ruhe, C. Wohlin, eds.), Springer 2014.

[19] C.K. Chang, C. Chao, S. Hsieh, “SPMNet: a formal

methodology for software management,” in Proc. COMPAC,

November, 1994.

[20] E. Alba, J.F. Chicano, “Software project management with

GAs,” Journal of Information Science, 177(11):2380- 2401,

2007.

[21] M. R. Karim et al., "An Empirical Investigation of Single-

objective and Multi-Objective Evolutionary Algorithms for

Developer’s Assignment to Bugs," to appear in Journal of

Software: Evolution and Process, 2016.

[22] A. Slivkins and J. W. Vaughan. Online Decision Making in

Crowdsourcing Markets: Theoretical Challenges. ACM

SIGecom Exchanges, Vol. 12, 2013, pp 4–23

[23] D. Karger, S. Oh, and D. Shah, “Iterative learning for reliable

crowdsourcing systems,” In 25th Advances in Neural

Information Processing Systems. 2011.

[24] Y. Singer, and M. Mittal, “Pricing mechanisms for

crowdsourcing markets,” Proc. Intl. WWWConf. 2013.

[25] M. S. Bernstein et al., “Analytic Methods for Optimizing

Real-time Crowdsourcing”, CS.SI 2012, 1204.2995

[26] G. Salton, M.G. McGill. Introduction to modern information

retrieval. McGraw-Hill. (1986).

[27] Github repository “TopCoder-Winner-Quitter”:

https://github.com/yy2111/TopCoder_Winner_Quitter.

Access date: March 15, 2016.

[28] P. A. Hancock, H. C. Ganey, “From the inverted-U to the

extended-U: The evolution of a law of psychology,” J. Human

Performance in Extreme Environments, 2013, pp 5–14.

[29] Y. Yang and J. O. Pedersen, “A Comparative Study on Feature

Selection in Text Categorization,” in Proc. Conference on ML,

Morgan Kaufmann Publishers. pp. 412-420, 1997.

[30] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,

I.H. Witten, “The WEKA data mining software: an update,”

SIGKDD Explorations Newsletter 11(1), 10–18. Nov 2009.

[31] S. Lessmann et al., “Benchmarking classification models for

software defect prediction: a proposed framework and novel

findings,” IEEE TSE, vol. 34, no. 4, pp. 485-496, 2008.

[32] A. Dwarakanath, N.C. Shrikanth, K. Abhinav, A. Kass,

“Trustworthiness in enterprise crowdsourcing: a taxonomy &

evidence from data,” Proc. ICSE 2016 pp 41-50.

https://en.wikipedia.org/wiki/McGraw-Hill

